DMPC: A data-and model-driven approach to predictive control

نویسندگان

چکیده

This work presents DMPC (Data-and Model-Driven Predictive Control) to solve control problems in which some of the constraints or parts objective function are known, while others entirely unknown controller. It is assumed that there an exogenous “black box” system, e.g. a machine learning technique, predicts value functions for given trajectory. (1) provides approach merge both model-based and black-box systems; (2) can cope with very little data sample efficient, building its solutions based on recently generated trajectories; (3) improves cost each iteration until converging optimal trajectory, typically needing only few trials even nonlinear dynamics objectives. Theoretical analysis algorithm presented, proving quality trajectory does not worsen new iteration. We apply motion planning autonomous vehicle dynamics.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Data-Driven Plant-Model Mismatch Quantification in Model Predictive Control

In this paper, we present a novel data-driven approach for estimating plant-model mismatch for linear MIMO systems operating under constrained MPC. We begin with analyzing the closed-loop plant data; under the assumption that changes in the active set of constraints of the controller are due to (low frequency) setpoint changes, we separate the data into a finite number of fixed active set (FAS)...

متن کامل

a new approach to credibility premium for zero-inflated poisson models for panel data

هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...

15 صفحه اول

A data driven subspace approach to predictive controller design

This paper shows the design of predictive controllers using the predictor, designed from the subspace matrices, obtained directly from the input/output data. The model-free design approach presented in the literature so far does not include all the important predictive control features such as inclusion of an integrator for offset-free control, constraint handling, feedforward option and a mean...

متن کامل

Data-driven Direct Adaptive Model Based Predictive Control

This paper is concerned with the design of Direct Adaptive Model Based Predictive Control (DAMBPC) using subspace identification technique to identify and implement the controller parameters. The direct identification of controller parameters reduces the design effort and computation load which is usually involved with classical adaptive control techniques. The proposed method requires a single...

متن کامل

Towards a Data-Driven Approach to Intervention Design: A Predictive Path Model of Healthy Eating Determinants

Dietary behavior and attitude play major roles in the worldwide prevalence of obesity, as weight is gained when energy intake exceeds energy expenditure. Although research has focused on designing technological interventions for healthy eating behavior, recent reviews have identified a gap in the knowledge base regarding the variables/determinants of healthy eating and the interactions between ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Automatica

سال: 2021

ISSN: ['1873-2836', '0005-1098']

DOI: https://doi.org/10.1016/j.automatica.2021.109729